Ultrathin cellulose films of tunable nanostructured morphology with a hydrophobic component.
نویسندگان
چکیده
In recent years, a wide range of different methods to implant nanosized patterns on surfaces have been developed. Spin coating immiscible binary polymer blends is a straightforward method to prepare micro- and nanostructures on thin films. This study utilizes binary blends to effortlessly prepare stable, surface-functionalized cellulose films. Blends of trimethylsilyl cellulose (TMSC) majority phase and polystyrene (PS) minority phase in toluene were spin coated into an ultrathin film, and TMSC was hydrolyzed to cellulose. The films were characterized and quantified using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), contact angle measurements, and quartz crystal microbalance (QCM-D). AFM revealed that horizontally phase-separated structures form during spin coating: after the hydrolyzation of TMSC to cellulose, PS protrudes from cellulose as distinct patches. The patches are disk-like structures with a circular radial cross-section and a height of ca. 5-20 nanometers. The smaller the amount of PS in the original spin coating solution, the smaller the PS island dimensions in the films. The results obtained from the XPS measurements support the AFM results. Water contact angle of the PS/cellulose films increases from 61 degrees to 71 degrees when the relative amount of hydrophobic PS is increased from 1:100 to 1:5. Thus by simply varying the ratio of the film components subtly tailored hydrophobic properties can be achieved. The swelling of the films due to exposure to water was studied by QCM-D. The swelling was not affected by the amount of PS in the blend, and at equivalent cellulose content the blends and pure cellulose films exhibited similar swelling characteristics. In addition, the QCM-D evaluation demonstrated that the films are stable over extended periods of time and are suitable for fundamental studies by QCM-D.
منابع مشابه
Supported ultrathin films and non- woven fibre mats from polysaccharide containing bicomponent polymer blends
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Laura Taajamaa Name of the doctoral dissertation Supported ultrathin films and non-woven fibre mats from polysaccharide containing bicomponent polymer blends Publisher School of Chemical Technology Unit Department of Forest Products Technology Series Aalto University publication series DOCTORAL DISSERTATIONS 87/2014 Field of r...
متن کاملConvection-assisted assembly of cellulose nanowhiskers embedded in an acrylic copolymer.
Ultrathin films containing a high fraction of cellulose nanowhiskers embedded in an acrylic-based polymer matrix were successfully prepared by a shear-convective assembly method. Their morphological, chemical and physical properties were examined by AFM Peak Force Tapping, Ellipsometry, contact angle and X-ray photoelectronic spectroscopy (XPS). Smooth, stable, robust and hydrophobic ultrathin ...
متن کاملPhase-specific pore growth in ultrathin bicomponent films from cellulose- based polysaccharides†
The preparation of ultrathin (<100 nm) bicomponent films from hydrophobic polysaccharides with phase-specific pore growth was demonstrated and the underlying phenomena behind morphology formation were fundamentally investigated. The films were constructed, in a single-step process, by spin coating mixtures of trimethylsilyl cellulose (TMSC) and cellulose triacetate (CTA) from a common solvent. ...
متن کاملFormulation, In-vitro Evaluations and Skin Irritation Study of Losartan Potassium Transdermal Patches
Losartan potassium is a well known orally active non-peptide angiotensin II receptor antagonist. Losartan potassium and its principle active metabolites block the vasoconstrictor and aldosterone secreting effect of angiotensin II by selectively blocking the binding of angiotensin II to AT1 receptors. The drug is reported to promote the decrease in ventricular hypertrophy, salt ...
متن کاملC1sm06020a 10386..10394
The preparation of ultrathin (<100 nm) bicomponent films from hydrophobic polysaccharides with phase-specific pore growth was demonstrated and the underlying phenomena behind morphology formation were fundamentally investigated. The films were constructed, in a single-step process, by spin coating mixtures of trimethylsilyl cellulose (TMSC) and cellulose triacetate (CTA) from a common solvent. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomacromolecules
دوره 10 5 شماره
صفحات -
تاریخ انتشار 2009